Optimal sequential procedures with Bayes decision rules
نویسنده
چکیده
In this article, a general problem of sequential statistical inference for general discrete-time stochastic processes is considered. The problem is to minimize an average sample number given that Bayesian risk due to incorrect decision does not exceed some given bound. We characterize the form of optimal sequential stopping rules in this problem. In particular, we have a characterization of the form of optimal sequential decision procedures when the Bayesian risk includes both the loss due to incorrect decision and the cost of observations.
منابع مشابه
Optimal Structural Nested Models for Optimal Sequential Decisions
I describe two new methods for estimating the optimal treatment regime (equivalently, protocol, plan or strategy) from very high dimesional observational and experimental data: (i) g-estimation of an optimal double-regime structural nested mean model (drSNMM) and (ii) g-estimation of a standard single regime SNMM combined with sequential dynamicprogramming (DP) regression. These methods are com...
متن کاملAsymptotically optimal Bayesian sequential change detection and identification rules
We study the joint problem of sequential change detection and multiple hypothesis testing. Suppose that the common distribution of a sequence of i.i.d. random variables changes suddenly at some unobservable time to one of finitely many distinct alternatives, and one needs to both detect and identify the change at the earliest possible time. We propose computationally efficient sequential decisi...
متن کاملApplying the Minimax Principle to Sequential Mastery Testing
The purpose of this paper is to derive optimal rules for sequential mastery tests. In a sequential mastery test, the decision is to classify a subject as a master, a nonmaster, or to continue sampling and administering another random item. The framework of minimax sequential decision theory (minimum information approach) is used; that is, optimal rules are obtained by minimizing the maximum exp...
متن کاملDesigning repetitive screening procedures with imperfect inspections: An empirical Bayes approach
A batch of expensive items, such as IC chips, is often inspected multiple times in a sequential manner to further discover more conforming items. After several rounds of screening, we need to estimate the number of conforming items that still remain in the batch. We propose in this paper an empirical Bayes estimation method and compare its performance with that of the traditional maximum likeli...
متن کاملCost-Sensitive Support Vector Machines
A new procedure for learning cost-sensitive SVM(CS-SVM) classifiers is proposed. The SVM hinge loss is extended to the cost sensitive setting, and the CS-SVM is derived as the minimizer of the associated risk. The extension of the hinge loss draws on recent connections between risk minimization and probability elicitation. These connections are generalized to cost-sensitive classification, in a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Kybernetika
دوره 46 شماره
صفحات -
تاریخ انتشار 2010